
MSAL Python Documentation
Release 1.24.0

Microsoft

Sep 12, 2023

CONTENTS:

1 Scenarios 3

2 API Reference 5

3 ClientApplication 7

4 PublicClientApplication 19

5 ConfidentialClientApplication 23

6 TokenCache 25

Index 27

i

ii

MSAL Python Documentation, Release 1.24.0

You can find high level conceptual documentations in the project README.

CONTENTS: 1

https://github.com/AzureAD/microsoft-authentication-library-for-python

MSAL Python Documentation, Release 1.24.0

2 CONTENTS:

CHAPTER

ONE

SCENARIOS

There are many different application scenarios. MSAL Python supports some of them. The following diagram serves
as a map. Locate your application scenario on the map. If the corresponding icon is clickable, it will bring you
to an MSAL Python sample for that scenario.

• Most authentication scenarios acquire tokens on behalf of signed-in users.

• There are also daemon apps. In these scenarios, applications acquire tokens on behalf of themselves with no
user.

• There are other less common samples, such for ADAL-to-MSAL migration, available inside the project code
base.

3

https://docs.microsoft.com/azure/active-directory/develop/authentication-flows-app-scenarios
https://github.com/AzureAD/microsoft-authentication-library-for-python/tree/dev/sample
https://github.com/AzureAD/microsoft-authentication-library-for-python/tree/dev/sample

MSAL Python Documentation, Release 1.24.0

4 Chapter 1. Scenarios

CHAPTER

TWO

API REFERENCE

The following section is the API Reference of MSAL Python. The API Reference is like a dictionary. You read this
API section when and only when:

• You already followed our sample(s) above and have your app up and running, but want to know more on how
you could tweak the authentication experience by using other optional parameters (there are plenty of them!)

• You read the MSAL Python source code and found a helper function that is useful to you, then you would want to
double check whether that helper is documented below. Only documented APIs are considered part of the MSAL
Python public API, which are guaranteed to be backward-compatible in MSAL Python 1.x series. Undocumented
internal helpers are subject to change anytime, without prior notice.

Note: Only APIs and their parameters documented in this section are part of public API, with guaranteed backward
compatibility for the entire 1.x series.

Other modules in the source code are all considered as internal helpers, which could change at anytime in the future,
without prior notice.

MSAL proposes a clean separation between public client applications and confidential client applications.

They are implemented as two separated classes, with different methods for different authentication scenarios.

5

https://tools.ietf.org/html/rfc6749#section-2.1

MSAL Python Documentation, Release 1.24.0

6 Chapter 2. API Reference

CHAPTER

THREE

CLIENTAPPLICATION

class msal.ClientApplication(client_id, client_credential=None, authority=None, validate_authority=True,
token_cache=None, http_client=None, verify=True, proxies=None,
timeout=None, client_claims=None, app_name=None, app_version=None,
client_capabilities=None, azure_region=None, exclude_scopes=None,
http_cache=None, instance_discovery=None, allow_broker=None,
enable_pii_log=None)

You do not usually directly use this class. Use its subclasses instead: PublicClientApplication and
ConfidentialClientApplication.

__init__(client_id, client_credential=None, authority=None, validate_authority=True, token_cache=None,
http_client=None, verify=True, proxies=None, timeout=None, client_claims=None,
app_name=None, app_version=None, client_capabilities=None, azure_region=None,
exclude_scopes=None, http_cache=None, instance_discovery=None, allow_broker=None,
enable_pii_log=None)

Create an instance of application.

Parameters

• client_id (str) – Your app has a client_id after you register it on AAD.

• client_credential (Union[str, _sphinx_paramlinks_msal.
ClientApplication.dict]) – For PublicClientApplication, you simply use
None here. For ConfidentialClientApplication, it can be a string containing client
secret, or an X509 certificate container in this form:

{
"private_key": "...-----BEGIN PRIVATE KEY-----... in PEM format

→˓",
"thumbprint": "A1B2C3D4E5F6...",
"public_certificate": "...-----BEGIN CERTIFICATE-----...␣

→˓(Optional. See below.)",
"passphrase": "Passphrase if the private_key is encrypted␣

→˓(Optional. Added in version 1.6.0)",
}

MSAL Python requires a “private_key” in PEM format. If your cert is in a PKCS12 (.pfx)
format, you can also convert it to PEM and get the thumbprint.

The thumbprint is available in your app’s registration in Azure Portal. Alternatively, you
can calculate the thumbprint.

Added in version 0.5.0: public_certificate (optional) is public key certificate which will be
sent through ‘x5c’ JWT header only for subject name and issuer authentication to support
cert auto rolls.

7

https://github.com/Azure/azure-sdk-for-python/blob/07d10639d7e47f4852eaeb74aef5d569db499d6e/sdk/identity/azure-identity/azure/identity/_credentials/certificate.py#L101-L123
https://github.com/Azure/azure-sdk-for-python/blob/07d10639d7e47f4852eaeb74aef5d569db499d6e/sdk/identity/azure-identity/azure/identity/_credentials/certificate.py#L94-L97

MSAL Python Documentation, Release 1.24.0

Per specs, “the certificate containing the public key corresponding to the key used to digi-
tally sign the JWS MUST be the first certificate. This MAY be followed by additional cer-
tificates, with each subsequent certificate being the one used to certify the previous one.”
However, your certificate’s issuer may use a different order. So, if your attempt ends up
with an error AADSTS700027 - “The provided signature value did not match the expected
signature value”, you may try use only the leaf cert (in PEM/str format) instead.

Added in version 1.13.0: It can also be a completely pre-signed assertion that you’ve as-
sembled yourself. Simply pass a container containing only the key “client_assertion”, like
this:

{
"client_assertion": "...a JWT with claims aud, exp, iss, jti,␣

→˓nbf, and sub..."
}

• client_claims (dict) – Added in version 0.5.0: It is a dictionary of extra claims that
would be signed by by this ConfidentialClientApplication ‘s private key. For ex-
ample, you can use {“client_ip”: “x.x.x.x”}. You may also override any of the following
default claims:

{
"aud": the_token_endpoint,
"iss": self.client_id,
"sub": same_as_issuer,
"exp": now + 10_min,
"iat": now,
"jti": a_random_uuid

}

• authority (str) – A URL that identifies a token authority. It should be of the for-
mat https://login.microsoftonline.com/your_tenant By default, we will use
https://login.microsoftonline.com/common

Changed in version 1.17: you can also use predefined constant and a builder like this:

from msal.authority import (
AuthorityBuilder,
AZURE_US_GOVERNMENT, AZURE_CHINA, AZURE_PUBLIC)

my_authority = AuthorityBuilder(AZURE_PUBLIC, "contoso.onmicrosoft.
→˓com")
Now you get an equivalent of
"https://login.microsoftonline.com/contoso.onmicrosoft.com"

You can feed such an authority to msal's ClientApplication
from msal import PublicClientApplication
app = PublicClientApplication("my_client_id", authority=my_
→˓authority, ...)

• validate_authority (bool) – (optional) Turns authority validation on or off. This pa-
rameter default to true.

• cache (TokenCache) – Sets the token cache used by this ClientApplication instance. By
default, an in-memory cache will be created and used.

• http_client – (optional) Your implementation of abstract class HttpClient
<msal.oauth2cli.http.http_client> Defaults to a requests session instance. Since MSAL

8 Chapter 3. ClientApplication

https://tools.ietf.org/html/rfc7515#section-4.1.6

MSAL Python Documentation, Release 1.24.0

1.11.0, the default session would be configured to attempt one retry on connection error. If
you are providing your own http_client, it will be your http_client’s duty to decide whether
to perform retry.

• verify – (optional) It will be passed to the verify parameter in the underlying requests
library This does not apply if you have chosen to pass your own Http client

• proxies – (optional) It will be passed to the proxies parameter in the underlying requests
library This does not apply if you have chosen to pass your own Http client

• timeout – (optional) It will be passed to the timeout parameter in the underlying requests
library This does not apply if you have chosen to pass your own Http client

• app_name – (optional) You can provide your application name for Microsoft telemetry
purposes. Default value is None, means it will not be passed to Microsoft.

• app_version – (optional) You can provide your application version for Microsoft teleme-
try purposes. Default value is None, means it will not be passed to Microsoft.

• client_capabilities (list[str]) – (optional) Allows configuration of one or more
client capabilities, e.g. [“CP1”].

Client capability is meant to inform the Microsoft identity platform (STS) what this client is
capable for, so STS can decide to turn on certain features. For example, if client is capable
to handle claims challenge, STS can then issue CAE access tokens to resources knowing
when the resource emits claims challenge the client will be capable to handle.

Implementation details: Client capability is implemented using “claims” parameter on the
wire, for now. MSAL will combine them into claims parameter which you will later provide
via one of the acquire-token request.

• azure_region (str) – AAD provides regional endpoints for apps to opt in to keep their
traffic remain inside that region.

As of 2021 May, regional service is only available for acquire_token_for_client()
sent by any of the following scenarios:

1. An app powered by a capable MSAL (MSAL Python 1.12+ will be provisioned)

2. An app with managed identity, which is formerly known as MSI. (However MSAL
Python does not support managed identity, so this one does not apply.)

3. An app authenticated by Subject Name/Issuer (SNI).

4. An app which already onboard to the region’s allow-list.

This parameter defaults to None, which means region behavior remains off.

App developer can opt in to a regional endpoint, by provide its region name, such
as “westus”, “eastus2”. You can find a full list of regions by running az account
list-locations -o table, or referencing to this doc.

An app running inside Azure Functions and Azure VM can use a special keyword
ClientApplication.ATTEMPT_REGION_DISCOVERY to auto-detect region.

Note: Setting azure_region to non-None for an app running outside of Azure Func-
tion/VM could hang indefinitely.

You should consider opting in/out region behavior on-demand, by loading
azure_region=None or azure_region="westus" or azure_region=True (which
means opt-in and auto-detect) from your per-deployment configuration, and then do app
= ConfidentialClientApplication(..., azure_region=azure_region).

9

http://docs.python-requests.org/en/v2.9.1/user/advanced/#ssl-cert-verification
http://docs.python-requests.org/en/v2.9.1/user/advanced/#ssl-cert-verification
http://docs.python-requests.org/en/v2.9.1/user/advanced/#proxies
http://docs.python-requests.org/en/v2.9.1/user/advanced/#proxies
http://docs.python-requests.org/en/v2.9.1/user/advanced/#timeouts
http://docs.python-requests.org/en/v2.9.1/user/advanced/#timeouts
https://openid.net/specs/openid-connect-core-1_0-final.html#ClaimsParameter
https://github.com/AzureAD/microsoft-authentication-library-for-python/issues/60
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.management.resourcemanager.fluent.core.region?view=azure-dotnet

MSAL Python Documentation, Release 1.24.0

Alternatively, you can configure a short timeout, or provide a custom http_client which has
a short timeout. That way, the latency would be under your control, but still less performant
than opting out of region feature.

New in version 1.12.0.

• exclude_scopes (list[str]) – (optional) Historically MSAL hardcodes offline_access
scope, which would allow your app to have prolonged access to user’s data. If that is
unnecessary or undesirable for your app, now you can use this parameter to supply an
exclusion list of scopes, such as exclude_scopes = ["offline_access"].

• http_cache (dict) – MSAL has long been caching tokens in the token_cache. Re-
cently, MSAL also introduced a concept of http_cache, by automatically caching some
finite amount of non-token http responses, so that long-lived PublicClientApplication
and ConfidentialClientApplication would be more performant and responsive in
some situations.

This http_cache parameter accepts any dict-like object. If not provided, MSAL will use
an in-memory dict.

If your app is a command-line app (CLI), you would want to persist your http_cache across
different CLI runs. The following recipe shows a way to do so:

Just add the following lines at the beginning of your CLI script
import sys, atexit, pickle
http_cache_filename = sys.argv[0] + ".http_cache"
try:

with open(http_cache_filename, "rb") as f:
persisted_http_cache = pickle.load(f) # Take a snapshot

except (
FileNotFoundError, # Or IOError in Python 2
pickle.UnpicklingError, # A corrupted http cache file
):

persisted_http_cache = {} # Recover by starting afresh
atexit.register(lambda: pickle.dump(

When exit, flush it back to the file.
It may occasionally overwrite another process's concurrent␣

→˓write,
but that is fine. Subsequent runs will reach eventual␣

→˓consistency.
persisted_http_cache, open(http_cache_file, "wb")))

And then you can implement your app as you normally would
app = msal.PublicClientApplication(

"your_client_id",
...,
http_cache=persisted_http_cache, # Utilize persisted_http_cache
...,
#token_cache=..., # You may combine the old token_cache trick

Please refer to token_cache recipe at
https://msal-python.readthedocs.io/en/latest/#msal.

→˓SerializableTokenCache
)

app.acquire_token_interactive(["your", "scope"], ...)

Content inside http_cache are cheap to obtain. There is no need to share them among

10 Chapter 3. ClientApplication

MSAL Python Documentation, Release 1.24.0

different apps.

Content inside http_cache will contain no tokens nor Personally Identifiable Information
(PII). Encryption is unnecessary.

New in version 1.16.0.

• instance_discovery (boolean) – Historically, MSAL would connect to a central end-
point located at https://login.microsoftonline.com to acquire some metadata, es-
pecially when using an unfamiliar authority. This behavior is known as Instance Discovery.

This parameter defaults to None, which enables the Instance Discovery.

If you know some authorities which you allow MSAL to operate with as-is, without involv-
ing any Instance Discovery, the recommended pattern is:

known_authorities = frozenset([# Treat your known authorities as␣
→˓const

"https://contoso.com/adfs", "https://login.azs/foo"])
...
authority = "https://contoso.com/adfs" # Assuming your app will␣
→˓use this
app1 = PublicClientApplication(

"client_id",
authority=authority,
Conditionally disable Instance Discovery for known authorities
instance_discovery=authority not in known_authorities,
)

If you do not know some authorities beforehand, yet still want MSAL to accept any au-
thority that you will provide, you can use a False to unconditionally disable Instance
Discovery.

New in version 1.19.0.

• allow_broker (boolean) – This parameter is NOT applicable to
ConfidentialClientApplication.

A broker is a component installed on your device. Broker implicitly gives your device an
identity. By using a broker, your device becomes a factor that can satisfy MFA (Multi-
factor authentication). This factor would become mandatory if a tenant’s admin enables
a corresponding Conditional Access (CA) policy. The broker’s presence allows Microsoft
identity platform to have higher confidence that the tokens are being issued to your device,
and that is more secure.

An additional benefit of broker is, it runs as a long-lived process with your device’s OS, and
maintains its own cache, so that your broker-enabled apps (even a CLI) could automatically
SSO from a previously established signed-in session.

This parameter defaults to None, which means MSAL will not utilize a broker. If this pa-
rameter is set to True, MSAL will use the broker whenever possible, and automatically
fall back to non-broker behavior. That also means your app does not need to enable bro-
ker conditionally, you can always set allow_broker to True, as long as your app meets the
following prerequisite:

– Installed optional dependency, e.g. pip install msal[broker]>=1.20,<2. (Note
that broker is currently only available on Windows 10+)

– Register a new redirect_uri for your desktop app as: ms-appx-web://Microsoft.
AAD.BrokerPlugin/your_client_id

11

MSAL Python Documentation, Release 1.24.0

– Tested your app in following scenarios:

∗ Windows 10+

∗ PublicClientApplication’s following methods:: acquire_token_interactive(),
acquire_token_by_username_password(), acquire_token_silent() (or ac-
quire_token_silent_with_error()).

∗ AAD and MSA accounts (i.e. Non-ADFS, non-B2C)

New in version 1.20.0.

• enable_pii_log (boolean) – When enabled, logs may include PII (Personal Identifiable
Information). This can be useful in troubleshooting broker behaviors. The default behavior
is False.

New in version 1.24.0.

acquire_token_by_auth_code_flow(auth_code_flow, auth_response, scopes=None, **kwargs)
Validate the auth response being redirected back, and obtain tokens.

It automatically provides nonce protection.

Parameters

• auth_code_flow (dict) – The same dict returned by
initiate_auth_code_flow().

• auth_response (dict) – A dict of the query string received from auth server.

• scopes (list[str]) – Scopes requested to access a protected API (a resource).

Most of the time, you can leave it empty.

If you requested user consent for multiple resources, here you will need to provide a
subset of what you required in initiate_auth_code_flow().

OAuth2 was designed mostly for singleton services, where tokens are always meant
for the same resource and the only changes are in the scopes. In AAD, tokens can be
issued for multiple 3rd party resources. You can ask authorization code for multiple
resources, but when you redeem it, the token is for only one intended recipient, called
audience. So the developer need to specify a scope so that we can restrict the token to
be issued for the corresponding audience.

Returns

• A dict containing “access_token” and/or “id_token”, among others, depends on what
scope was used. (See https://tools.ietf.org/html/rfc6749#section-5.1)

• A dict containing “error”, optionally “error_description”, “error_uri”. (It is either this
or that)

• Most client-side data error would result in ValueError exception. So the usage pattern
could be without any protocol details:

def authorize(): # A controller in a web app
try:

result = msal_app.acquire_token_by_auth_code_flow(
session.get("flow", {}), request.args)

if "error" in result:
return render_template("error.html", result)

use(result) # Token(s) are available in result and␣
→˓cache

(continues on next page)

12 Chapter 3. ClientApplication

https://tools.ietf.org/html/rfc6749#section-5.1
https://tools.ietf.org/html/rfc6749#section-4.1.2.1
https://tools.ietf.org/html/rfc6749#section-5.2

MSAL Python Documentation, Release 1.24.0

(continued from previous page)

except ValueError: # Usually caused by CSRF
pass # Simply ignore them

return redirect(url_for("index"))

acquire_token_by_authorization_code(code, scopes, redirect_uri=None, nonce=None,
claims_challenge=None, **kwargs)

The second half of the Authorization Code Grant.

Parameters

• code – The authorization code returned from Authorization Server.

• scopes (list[str]) – (Required) Scopes requested to access a protected API (a
resource).

If you requested user consent for multiple resources, here you will typically want to
provide a subset of what you required in AuthCode.

OAuth2 was designed mostly for singleton services, where tokens are always meant
for the same resource and the only changes are in the scopes. In AAD, tokens can be
issued for multiple 3rd party resources. You can ask authorization code for multiple
resources, but when you redeem it, the token is for only one intended recipient, called
audience. So the developer need to specify a scope so that we can restrict the token to
be issued for the corresponding audience.

• nonce – If you provided a nonce when calling
get_authorization_request_url(), same nonce should also be provided
here, so that we’ll validate it. An exception will be raised if the nonce in id token
mismatches.

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

A dict representing the json response from AAD:

• A successful response would contain “access_token” key,

• an error response would contain “error” and usually “error_description”.

acquire_token_by_refresh_token(refresh_token, scopes, **kwargs)
Acquire token(s) based on a refresh token (RT) obtained from elsewhere.

You use this method only when you have old RTs from elsewhere, and now you want to migrate them into
MSAL. Calling this method results in new tokens automatically storing into MSAL.

You do NOT need to use this method if you are already using MSAL. MSAL maintains RT automatically
inside its token cache, and an access token can be retrieved when you call acquire_token_silent().

Parameters

• refresh_token (str) – The old refresh token, as a string.

• scopes (list) – The scopes associate with this old RT. Each scope needs to be in the
Microsoft identity platform (v2) format. See Scopes not resources.

Returns

13

https://docs.microsoft.com/en-us/azure/active-directory/develop/migrate-python-adal-msal#scopes-not-resources

MSAL Python Documentation, Release 1.24.0

• A dict contains “error” and some other keys, when error happened.

• A dict contains no “error” key means migration was successful.

acquire_token_by_username_password(username, password, scopes, claims_challenge=None,
**kwargs)

Gets a token for a given resource via user credentials.

See this page for constraints of Username Password Flow. https://github.com/AzureAD/
microsoft-authentication-library-for-python/wiki/Username-Password-Authentication

Parameters

• username (str) – Typically a UPN in the form of an email address.

• password (str) – The password.

• scopes (list[str]) – Scopes requested to access a protected API (a resource).

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

A dict representing the json response from AAD:

• A successful response would contain “access_token” key,

• an error response would contain “error” and usually “error_description”.

acquire_token_silent(scopes, account, authority=None, force_refresh=False, claims_challenge=None,
**kwargs)

Acquire an access token for given account, without user interaction.

It has same parameters as the acquire_token_silent_with_error(). The difference is the behavior
of the return value. This method will combine the cache empty and refresh error into one return value,
None. If your app does not care about the exact token refresh error during token cache look-up, then this
method is easier and recommended.

Returns

• A dict containing no “error” key, and typically contains an “access_token” key, if cache
lookup succeeded.

• None when cache lookup does not yield a token.

acquire_token_silent_with_error(scopes, account, authority=None, force_refresh=False,
claims_challenge=None, **kwargs)

Acquire an access token for given account, without user interaction.

It is done either by finding a valid access token from cache, or by finding a valid refresh token from cache
and then automatically use it to redeem a new access token.

This method will differentiate cache empty from token refresh error. If your app cares the exact token
refresh error during token cache look-up, then this method is suitable. Otherwise, the other method
acquire_token_silent() is recommended.

Parameters

• scopes (list[str]) – (Required) Scopes requested to access a protected API (a
resource).

14 Chapter 3. ClientApplication

https://github.com/AzureAD/microsoft-authentication-library-for-python/wiki/Username-Password-Authentication
https://github.com/AzureAD/microsoft-authentication-library-for-python/wiki/Username-Password-Authentication

MSAL Python Documentation, Release 1.24.0

• account – (Required) One of the account object returned by get_accounts(). Start-
ing from MSAL Python 1.23, a None input will become a NO-OP and always return
None.

• force_refresh – If True, it will skip Access Token look-up, and try to find a Refresh
Token to obtain a new Access Token.

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

• A dict containing no “error” key, and typically contains an “access_token” key, if cache
lookup succeeded.

• None when there is simply no token in the cache.

• A dict containing an “error” key, when token refresh failed.

get_accounts(username=None)
Get a list of accounts which previously signed in, i.e. exists in cache.

An account can later be used in acquire_token_silent() to find its tokens.

Parameters
username – Filter accounts with this username only. Case insensitive.

Returns
A list of account objects. Each account is a dict. For now, we only document its “username”
field. Your app can choose to display those information to end user, and allow user to
choose one of his/her accounts to proceed.

get_authorization_request_url(scopes, login_hint=None, state=None, redirect_uri=None,
response_type='code', prompt=None, nonce=None,
domain_hint=None, claims_challenge=None, **kwargs)

Constructs a URL for you to start a Authorization Code Grant.

Parameters

• scopes (list[str]) – (Required) Scopes requested to access a protected API (a
resource).

• state (str) – Recommended by OAuth2 for CSRF protection.

• login_hint (str) – Identifier of the user. Generally a User Principal Name (UPN).

• redirect_uri (str) – Address to return to upon receiving a response from the au-
thority.

• response_type (str) – Default value is “code” for an OAuth2 Authorization Code
grant.

You could use other content such as “id_token” or “token”, which would trigger an
Implicit Grant, but that is not recommended.

• prompt (str) – By default, no prompt value will be sent, not even “none”. You will
have to specify a value explicitly. Its valid values are defined in Open ID Connect
specs https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

15

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-implicit-grant-flow#is-the-implicit-grant-suitable-for-my-app
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

MSAL Python Documentation, Release 1.24.0

• nonce – A cryptographically random value used to mitigate replay attacks. See also
OIDC specs.

• domain_hint – Can be one of “consumers” or “organizations” or your tenant domain
“contoso.com”. If included, it will skip the email-based discovery process that user
goes through on the sign-in page, leading to a slightly more streamlined user expe-
rience. More information on possible values available in Auth Code Flow doc and
domain_hint doc.

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns
The authorization url as a string.

initiate_auth_code_flow(scopes, redirect_uri=None, state=None, prompt=None, login_hint=None,
domain_hint=None, claims_challenge=None, max_age=None,
response_mode=None)

Initiate an auth code flow.

Later when the response reaches your redirect_uri, you can use acquire_token_by_auth_code_flow()
to complete the authentication/authorization.

Parameters

• scopes (list) – It is a list of case-sensitive strings.

• redirect_uri (str) – Optional. If not specified, server will use the pre-registered
one.

• state (str) – An opaque value used by the client to maintain state between the request
and callback. If absent, this library will automatically generate one internally.

• prompt (str) – By default, no prompt value will be sent, not even “none”. You will
have to specify a value explicitly. Its valid values are defined in Open ID Connect
specs https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

• login_hint (str) – Optional. Identifier of the user. Generally a User Principal Name
(UPN).

• domain_hint – Can be one of “consumers” or “organizations” or your tenant domain
“contoso.com”. If included, it will skip the email-based discovery process that user
goes through on the sign-in page, leading to a slightly more streamlined user expe-
rience. More information on possible values available in Auth Code Flow doc and
domain_hint doc.

• max_age (int) – OPTIONAL. Maximum Authentication Age. Specifies the allowable
elapsed time in seconds since the last time the End-User was actively authenticated.
If the elapsed time is greater than this value, Microsoft identity platform will actively
re-authenticate the End-User.

MSAL Python will also automatically validate the auth_time in ID token.

New in version 1.15.

• response_mode (str) – OPTIONAL. Specifies the method with which response
parameters should be returned. The default value is equivalent to query, which is
still secure enough in MSAL Python (because MSAL Python does not transfer to-
kens via query parameter in the first place). For even better security, we recommend

16 Chapter 3. ClientApplication

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#request-an-authorization-code
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-oapx/86fb452d-e34a-494e-ac61-e526e263b6d8
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#request-an-authorization-code
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-oapx/86fb452d-e34a-494e-ac61-e526e263b6d8

MSAL Python Documentation, Release 1.24.0

using the value form_post. In “form_post” mode, response parameters will be en-
coded as HTML form values that are transmitted via the HTTP POST method and
encoded in the body using the application/x-www-form-urlencoded format. Valid val-
ues can be either “form_post” for HTTP POST to callback URI or “query” (the de-
fault) for HTTP GET with parameters encoded in query string. More information
on possible values here <https://openid.net/specs/oauth-v2-multiple-response-types-
1_0.html#ResponseModes> and here <https://openid.net/specs/oauth-v2-form-post-
response-mode-1_0.html#FormPostResponseMode>

Returns

The auth code flow. It is a dict in this form:

{
"auth_uri": "https://...", // Guide user to visit this
"state": "...", // You may choose to verify it by yourself,

// or just let acquire_token_by_auth_code_
→˓flow()

// do that for you.
"...": "...", // Everything else are reserved and internal

}

The caller is expected to:

1. somehow store this content, typically inside the current session,

2. guide the end user (i.e. resource owner) to visit that auth_uri,

3. and then relay this dict and subsequent auth response to
acquire_token_by_auth_code_flow().

remove_account(account)
Sign me out and forget me from token cache

17

MSAL Python Documentation, Release 1.24.0

18 Chapter 3. ClientApplication

CHAPTER

FOUR

PUBLICCLIENTAPPLICATION

class msal.PublicClientApplication(client_id, client_credential=None, **kwargs)

__init__(client_id, client_credential=None, **kwargs)
Same as ClientApplication.__init__(), except that client_credential parameter shall remain
None.

acquire_token_by_device_flow(flow, claims_challenge=None, **kwargs)
Obtain token by a device flow object, with customizable polling effect.

Parameters

• flow (dict) – A dict previously generated by initiate_device_flow(). By de-
fault, this method’s polling effect will block current thread. You can abort the polling
loop at any time, by changing the value of the flow’s “expires_at” key to 0.

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

A dict representing the json response from AAD:

• A successful response would contain “access_token” key,

• an error response would contain “error” and usually “error_description”.

acquire_token_interactive(scopes, prompt=None, login_hint=None, domain_hint=None,
claims_challenge=None, timeout=None, port=None,
extra_scopes_to_consent=None, max_age=None,
parent_window_handle=None, on_before_launching_ui=None, **kwargs)

Acquire token interactively i.e. via a local browser.

Prerequisite: In Azure Portal, configure the Redirect URI of your “Mobile and Desktop application” as
http://localhost. If you opts in to use broker during PublicClientApplication creation, your app
also need this Redirect URI: ms-appx-web://Microsoft.AAD.BrokerPlugin/YOUR_CLIENT_ID

Parameters

• scopes (list) – It is a list of case-sensitive strings.

• prompt (str) – By default, no prompt value will be sent, not even “none”. You will
have to specify a value explicitly. Its valid values are defined in Open ID Connect
specs https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

19

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

MSAL Python Documentation, Release 1.24.0

• login_hint (str) – Optional. Identifier of the user. Generally a User Principal Name
(UPN).

• domain_hint – Can be one of “consumers” or “organizations” or your tenant domain
“contoso.com”. If included, it will skip the email-based discovery process that user
goes through on the sign-in page, leading to a slightly more streamlined user expe-
rience. More information on possible values available in Auth Code Flow doc and
domain_hint doc.

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

• timeout (int) – This method will block the current thread. This parameter specifies
the timeout value in seconds. Default value None means wait indefinitely.

• port (int) – The port to be used to listen to an incoming auth response. By default
we will use a system-allocated port. (The rest of the redirect_uri is hard coded as
http://localhost.)

• extra_scopes_to_consent (list) – “Extra scopes to consent” is a concept only
available in AAD. It refers to other resources you might want to prompt to consent for,
in the same interaction, but for which you won’t get back a token for in this particular
operation.

• max_age (int) – OPTIONAL. Maximum Authentication Age. Specifies the allowable
elapsed time in seconds since the last time the End-User was actively authenticated.
If the elapsed time is greater than this value, Microsoft identity platform will actively
re-authenticate the End-User.

MSAL Python will also automatically validate the auth_time in ID token.

New in version 1.15.

• parent_window_handle (int) – OPTIONAL. If your app is a GUI app running on
modern Windows system, and your app opts in to use broker, you are recommended
to also provide its window handle, so that the sign in UI window will properly pop up
on top of your window.

New in version 1.20.0.

• on_before_launching_ui (function) – A callback with the form of lambda
ui="xyz", **kwargs: print("A {} will be launched".format(ui)),
where ui will be either “browser” or “broker”. You can use it to inform your end user
to expect a pop-up window.

New in version 1.20.0.

Returns

• A dict containing no “error” key, and typically contains an “access_token” key.

• A dict containing an “error” key, when token refresh failed.

initiate_device_flow(scopes=None, **kwargs)
Initiate a Device Flow instance, which will be used in acquire_token_by_device_flow().

Parameters
scopes (list[str]) – Scopes requested to access a protected API (a resource).

20 Chapter 4. PublicClientApplication

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow#request-an-authorization-code
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-oapx/86fb452d-e34a-494e-ac61-e526e263b6d8

MSAL Python Documentation, Release 1.24.0

Returns

A dict representing a newly created Device Flow object.

• A successful response would contain “user_code” key, among others

• an error response would contain some other readable key/value pairs.

21

MSAL Python Documentation, Release 1.24.0

22 Chapter 4. PublicClientApplication

CHAPTER

FIVE

CONFIDENTIALCLIENTAPPLICATION

class msal.ConfidentialClientApplication(client_id, client_credential=None, authority=None,
validate_authority=True, token_cache=None,
http_client=None, verify=True, proxies=None, timeout=None,
client_claims=None, app_name=None, app_version=None,
client_capabilities=None, azure_region=None,
exclude_scopes=None, http_cache=None,
instance_discovery=None, allow_broker=None,
enable_pii_log=None)

Same as ClientApplication.__init__(), except that allow_broker parameter shall remain None.

acquire_token_for_client(scopes, claims_challenge=None, **kwargs)
Acquires token for the current confidential client, not for an end user.

Since MSAL Python 1.23, it will automatically look for token from cache, and only send request to Identity
Provider when cache misses.

Parameters

• scopes (list[str]) – (Required) Scopes requested to access a protected API (a
resource).

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

A dict representing the json response from AAD:

• A successful response would contain “access_token” key,

• an error response would contain “error” and usually “error_description”.

acquire_token_on_behalf_of(user_assertion, scopes, claims_challenge=None, **kwargs)
Acquires token using on-behalf-of (OBO) flow.

The current app is a middle-tier service which was called with a token representing an end user. The
current app can use such token (a.k.a. a user assertion) to request another token to access downstream web
API, on behalf of that user. See detail docs here .

The current middle-tier app has no user interaction to obtain consent. See how to gain consent upfront for
your middle-tier app from this article. https://docs.microsoft.com/en-us/azure/active-directory/develop/
v2-oauth2-on-behalf-of-flow#gaining-consent-for-the-middle-tier-application

Parameters

23

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow#gaining-consent-for-the-middle-tier-application
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow#gaining-consent-for-the-middle-tier-application

MSAL Python Documentation, Release 1.24.0

• user_assertion (str) – The incoming token already received by this app

• scopes (list[str]) – Scopes required by downstream API (a resource).

• claims_challenge – The claims_challenge parameter requests specific claims re-
quested by the resource provider in the form of a claims_challenge directive in the
www-authenticate header to be returned from the UserInfo Endpoint and/or in the ID
Token and/or Access Token. It is a string of a JSON object which contains lists of
claims being requested from these locations.

Returns

A dict representing the json response from AAD:

• A successful response would contain “access_token” key,

• an error response would contain “error” and usually “error_description”.

24 Chapter 5. ConfidentialClientApplication

CHAPTER

SIX

TOKENCACHE

One of the parameters accepted by both PublicClientApplication and ConfidentialClientApplication is the TokenCache.

class msal.TokenCache

This is considered as a base class containing minimal cache behavior.

Although it maintains tokens using unified schema across all MSAL libraries, this class does not serialize/persist
them. See subclass SerializableTokenCache for details on serialization.

add(event, now=None)
Handle a token obtaining event, and add tokens into cache.

You can subclass it to add new behavior, such as, token serialization. See SerializableTokenCache for example.

class msal.SerializableTokenCache

This serialization can be a starting point to implement your own persistence.

This class does NOT actually persist the cache on disk/db/etc.. Depending on your need, the following simple
recipe for file-based persistence may be sufficient:

import os, atexit, msal
cache = msal.SerializableTokenCache()
if os.path.exists("my_cache.bin"):

cache.deserialize(open("my_cache.bin", "r").read())
atexit.register(lambda:

open("my_cache.bin", "w").write(cache.serialize())
Hint: The following optional line persists only when state changed
if cache.has_state_changed else None
)

app = msal.ClientApplication(..., token_cache=cache)
...

Variables
has_state_changed (bool) – Indicates whether the cache state in the memory has changed
since last serialize() or deserialize() call.

add(event, **kwargs)
Handle a token obtaining event, and add tokens into cache.

deserialize(state)
Deserialize the cache from a state previously obtained by serialize()

serialize()

Serialize the current cache state into a string.

25

MSAL Python Documentation, Release 1.24.0

26 Chapter 6. TokenCache

INDEX

Symbols
__init__() (msal.ClientApplication method), 7
__init__() (msal.PublicClientApplication method), 19

A
acquire_token_by_auth_code_flow()

(msal.ClientApplication method), 12
acquire_token_by_authorization_code()

(msal.ClientApplication method), 13
acquire_token_by_device_flow()

(msal.PublicClientApplication method),
19

acquire_token_by_refresh_token()
(msal.ClientApplication method), 13

acquire_token_by_username_password()
(msal.ClientApplication method), 14

acquire_token_for_client()
(msal.ConfidentialClientApplication method),
23

acquire_token_interactive()
(msal.PublicClientApplication method),
19

acquire_token_on_behalf_of()
(msal.ConfidentialClientApplication method),
23

acquire_token_silent() (msal.ClientApplication
method), 14

acquire_token_silent_with_error()
(msal.ClientApplication method), 14

add() (msal.SerializableTokenCache method), 25
add() (msal.TokenCache method), 25

C
ClientApplication (class in msal), 7
ConfidentialClientApplication (class in msal), 23

D
deserialize() (msal.SerializableTokenCache method),

25

G
get_accounts() (msal.ClientApplication method), 15

get_authorization_request_url()
(msal.ClientApplication method), 15

I
initiate_auth_code_flow() (msal.ClientApplication

method), 16
initiate_device_flow()

(msal.PublicClientApplication method),
20

P
PublicClientApplication (class in msal), 19

R
remove_account() (msal.ClientApplication method),

17

S
SerializableTokenCache (class in msal), 25
serialize() (msal.SerializableTokenCache method), 25

T
TokenCache (class in msal), 25

27

	Scenarios
	API Reference
	ClientApplication
	PublicClientApplication
	ConfidentialClientApplication
	TokenCache
	Index

